3.6.78 \(\int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx\) [578]

3.6.78.1 Optimal result
3.6.78.2 Mathematica [C] (verified)
3.6.78.3 Rubi [A] (verified)
3.6.78.4 Maple [A] (verified)
3.6.78.5 Fricas [B] (verification not implemented)
3.6.78.6 Sympy [F]
3.6.78.7 Maxima [A] (verification not implemented)
3.6.78.8 Giac [F(-1)]
3.6.78.9 Mupad [B] (verification not implemented)

3.6.78.1 Optimal result

Integrand size = 21, antiderivative size = 150 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=-\frac {(a+b) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {(a+b) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d} \]

output
1/2*(a+b)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)+1/2*(a+b)*arctan(1 
+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/4*(a-b)*ln(1-2^(1/2)*tan(d*x+c)^(1/ 
2)+tan(d*x+c))/d*2^(1/2)+1/4*(a-b)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c 
))/d*2^(1/2)
 
3.6.78.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.04 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.41 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=-\frac {\sqrt [4]{-1} \left ((a-i b) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+(a+i b) \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )\right )}{d} \]

input
Integrate[(a + b*Tan[c + d*x])/Sqrt[Tan[c + d*x]],x]
 
output
-(((-1)^(1/4)*((a - I*b)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + (a + I*b) 
*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]))/d)
 
3.6.78.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.97, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {a+b \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a+b) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a-b) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}\)

input
Int[(a + b*Tan[c + d*x])/Sqrt[Tan[c + d*x]],x]
 
output
(2*(((a + b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]) + ArcTan[1 
 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]))/2 + ((a - b)*(-1/2*Log[1 - Sqrt[2 
]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Tan[c 
+ d*x]] + Tan[c + d*x]]/(2*Sqrt[2])))/2))/d
 

3.6.78.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 
3.6.78.4 Maple [A] (verified)

Time = 0.00 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.19

method result size
derivativedivides \(\frac {\frac {a \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(178\)
default \(\frac {\frac {a \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(178\)
parts \(\frac {a \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}\) \(180\)

input
int((a+b*tan(d*x+c))/tan(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/d*(1/4*a*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)* 
tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arcta 
n(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*b*2^(1/2)*(ln((1-2^(1/2)*tan(d*x+c)^(1 
/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2 
)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))))
 
3.6.78.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 561 vs. \(2 (122) = 244\).

Time = 0.24 (sec) , antiderivative size = 561, normalized size of antiderivative = 3.74 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=-\frac {1}{2} \, \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} \log \left ({\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) + \frac {1}{2} \, \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} \log \left (-{\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) + \frac {1}{2} \, \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} \log \left ({\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) - \frac {1}{2} \, \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} \log \left (-{\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) \]

input
integrate((a+b*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="fricas")
 
output
-1/2*sqrt(-(d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2)*log((b*d^ 
3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + (a^3 - a*b^2)*d)*sqrt(-(d^2*sqrt(-( 
a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan(d*x + c)) 
) + 1/2*sqrt(-(d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2)*log(-( 
b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + (a^3 - a*b^2)*d)*sqrt(-(d^2*sqr 
t(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan(d*x + 
 c))) + 1/2*sqrt((d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2)*log 
((b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - (a^3 - a*b^2)*d)*sqrt((d^2*sq 
rt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan(d*x 
+ c))) - 1/2*sqrt((d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2)*lo 
g(-(b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - (a^3 - a*b^2)*d)*sqrt((d^2* 
sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan(d* 
x + c)))
 
3.6.78.6 Sympy [F]

\[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=\int \frac {a + b \tan {\left (c + d x \right )}}{\sqrt {\tan {\left (c + d x \right )}}}\, dx \]

input
integrate((a+b*tan(d*x+c))/tan(d*x+c)**(1/2),x)
 
output
Integral((a + b*tan(c + d*x))/sqrt(tan(c + d*x)), x)
 
3.6.78.7 Maxima [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.83 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=\frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + \sqrt {2} {\left (a - b\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt {2} {\left (a - b\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )}{4 \, d} \]

input
integrate((a+b*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="maxima")
 
output
1/4*(2*sqrt(2)*(a + b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c))) 
) + 2*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c))) 
) + sqrt(2)*(a - b)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - s 
qrt(2)*(a - b)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))/d
 
3.6.78.8 Giac [F(-1)]

Timed out. \[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((a+b*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.6.78.9 Mupad [B] (verification not implemented)

Time = 0.00 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.94 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx=\frac {\sqrt {2}\,b\,\left (\ln \left (\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}-\mathrm {tan}\left (c+d\,x\right )-1\right )-\ln \left (\mathrm {tan}\left (c+d\,x\right )+\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}+1\right )\right )}{4\,d}+\frac {\sqrt {2}\,b\,\left (\mathrm {atan}\left (\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}-1\right )+\mathrm {atan}\left (\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}+1\right )\right )}{2\,d}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )\,1{}\mathrm {i}}{d} \]

input
int((a + b*tan(c + d*x))/tan(c + d*x)^(1/2),x)
 
output
(2^(1/2)*b*(log(2^(1/2)*tan(c + d*x)^(1/2) - tan(c + d*x) - 1) - log(tan(c 
 + d*x) + 2^(1/2)*tan(c + d*x)^(1/2) + 1)))/(4*d) - ((-1)^(1/4)*a*atan((-1 
)^(1/4)*tan(c + d*x)^(1/2))*1i)/d - ((-1)^(1/4)*a*atanh((-1)^(1/4)*tan(c + 
 d*x)^(1/2))*1i)/d + (2^(1/2)*b*(atan(2^(1/2)*tan(c + d*x)^(1/2) - 1) + at 
an(2^(1/2)*tan(c + d*x)^(1/2) + 1)))/(2*d)